Author Topic: How Did Supermassive Black Holes Get So Big So Fast?  (Read 501 times)

0 Members and 1 Guest are viewing this topic.

Online Buster's Uncle

  • Geo's kind, I unwind, HE'S the
  • Planetary Overmind
  • *
  • Posts: 51360
  • €233
  • View Inventory
  • Send /Gift
  • Because there are times when people just need a cute puppy  Soft kitty, warm kitty, little ball of fur  A WONDERFUL concept, Unity - & a 1-way trip that cost 400 trillion & 40 yrs.  
  • AC2 is my instrument, my heart, as I play my song.
  • Planet tales writer Smilie Artist Custom Faction Modder AC2 Wiki contributor Downloads Contributor
    • View Profile
    • My Custom Factions
    • Awards
How Did Supermassive Black Holes Get So Big So Fast?
« on: August 07, 2014, 08:18:14 pm »
How Did Supermassive Black Holes Get So Big So Fast?
SPACE.com
by Charles Q. Choi, SPACE.com Contributor  54 minutes ago



This illustration depicts matter falling into a supermassive black hole, creating jets of material travelling almost at the speed of light.



Black holes may have grown incredibly rapidly in the newborn universe, perhaps helping explain why they appear so early in cosmic history, researchers say.

Black holes possess gravitational pulls so powerful that not even light can escape their clutches. They are generally believed to form after massive stars die in gargantuan explosions known as supernovas, which crush the remaining cores into incredibly dense objects.

Supermassive black holes millions to billions of times the mass of the sun occur at the center of most, if not all, galaxies. Such monstrously large black holes have existed since the infancy of the universe, some 800 million years or so after the Big Bang. However, it remains a mystery how these giants could have grown so big in the relatively short amount of time they had to form.

In modern black holes, features called accretion disks limit the speed of growth. These disks of gas and dust that swirl into black holes can prevent black holes from growing rapidly in two different ways, researchers say. First, as matter in an accretion disk gets close to a black hole, traffic jams occur that slow down any other infalling material. Second, as matter collides within these traffic jams, it heats up, generating energetic radiation that drives gas and dust away from the black hole.

"Black holes don't actively suck in matter — they are not like vacuum cleaners," said lead study author Tal Alexander, an astrophysicist at the Weizmann Institute of Science in Rehovot, Israel.

"A star or a gas stream can be on a stable orbit around a black hole, exactly as the Earth revolves around the sun, without falling into it," Alexander told Space.com. "It is actually quite a challenge to think of efficient ways to drive gas into the black hole at a high enough rate that can lead to rapid growth."

Alexander and his colleague Priyamvada Natarajan may have found a way in which early black holes could have grown to supermassive proportions — in part, by operating without the restrictions of accretion disks. The pair detailed their findings online today (Aug. 7) in the journal Science.

The scientists began with a model of a black hole 10 times the mass of the sun embedded in a cluster of thousands of stars. They fed the simulated black hole continuous flows of dense, cold, opaque gas.

"The early universe was much smaller and hence denser on average than it is today," Alexander said.

This cold, dense gas would have obscured a substantial amount of the energetic radiation given off by matter falling into the black hole. In addition, the gravitational pull of the many stars around the black hole "causes it to zigzag randomly, and this erratic motion prevents the formation of a slowly draining accretion disk," Alexander said. This means that matter falls into the black hole from all sides instead of getting forced into a disk around the black hole, from which it would swirl in far more slowly.

The "supra-exponential growth" observed in the model black hole suggests that a black hole 10 times the mass of the sun could have grown to more than 10 billion times the mass of the sun by just 1 billion years after the Big Bang, researchers said.

"This theoretical result shows a plausible route to the formation of supermassive black holes very soon after the Big Bang," Alexander said.

Future research could examine whether supra-exponential growth of black holes could occur in modern times as well. The high-density and high-mass cold flows seen in the ancient universe may exist "for short times in unstable, dense, star-forming clusters, or in dense accretion disks around already-existing supermassive black holes," Alexander said.

You can read the abstract of the new study here.


http://news.yahoo.com/did-supermassive-black-holes-big-fast-181408922.html

 

* User

Welcome, Guest. Please login or register.
Did you miss your activation email?


Login with username, password and session length

Select language:

* Community poll

SMAC v.4 SMAX v.2 (or previous versions)
-=-
24 (7%)
XP Compatibility patch
-=-
9 (2%)
Gog version for Windows
-=-
106 (33%)
Scient (unofficial) patch
-=-
40 (12%)
Kyrub's latest patch
-=-
14 (4%)
Yitzi's latest patch
-=-
89 (28%)
AC for Mac
-=-
3 (0%)
AC for Linux
-=-
5 (1%)
Gog version for Mac
-=-
10 (3%)
No patch
-=-
16 (5%)
Total Members Voted: 316
AC2 Wiki Logo
-click pic for wik-

* Random quote

Already we have turned all of our critical industries, all of our material resources, over to these...things...these lumps of silver and paste we call nanorobots. And now we propose to teach them intelligence? What, pray tell, will we do when these little homunculi awaken one day announce that they have no further need for us?
~Sister Miriam Godwinson 'We must Dissent'

* Select your theme

*
Templates: 5: index (default), PortaMx/Mainindex (default), PortaMx/Frames (default), Display (default), GenericControls (default).
Sub templates: 8: init, html_above, body_above, portamx_above, main, portamx_below, body_below, html_below.
Language files: 4: index+Modifications.english (default), TopicRating/.english (default), PortaMx/PortaMx.english (default), OharaYTEmbed.english (default).
Style sheets: 0: .
Files included: 45 - 1228KB. (show)
Queries used: 35.

[Show Queries]