Author Topic: This Computer Chip Can Think Like a Human Brain  (Read 587 times)

0 Members and 1 Guest are viewing this topic.

Offline Buster's Uncle

  • Geo's kind, I unwind, HE'S the
  • Planetary Overmind
  • *
  • Posts: 51360
  • €233
  • View Inventory
  • Send /Gift
  • Because there are times when people just need a cute puppy  Soft kitty, warm kitty, little ball of fur  A WONDERFUL concept, Unity - & a 1-way trip that cost 400 trillion & 40 yrs.  
  • AC2 is my instrument, my heart, as I play my song.
  • Planet tales writer Smilie Artist Custom Faction Modder AC2 Wiki contributor Downloads Contributor
    • View Profile
    • My Custom Factions
    • Awards
This Computer Chip Can Think Like a Human Brain
« on: August 07, 2014, 08:08:11 pm »
This Computer Chip Can Think Like a Human Brain
LiveScience.com
By Tanya Lewis, Staff Writer  44 minutes ago



A thermal image of IBM's so-called TrueNorth computer chip (left) next to other chips feeding data to the brainlike TrueNorth chip.



IBM's latest brainlike computer chip may not be "smarter than a fifth-grader," but it can simulate millions of the brain's neurons and perform complex tasks using very little energy.

Researchers for the computer hardware giant have developed a postage-stamp-size chip, equipped with 5.4 billion transistors, that is capable of simulating 1 million neurons and 256 million neural connections, or synapses. In addition to mimicking the brain's processing by themselves, individual chips can be connected together like tiles, similar to how circuits are linked in the human brain

The team used its "TrueNorth" chip, described today (Aug. 7) in the journal Science, to perform a task that is very challenging for conventional computers: identifying people or objects in an image. [Super-Intelligent Machines: 7 Robotic Futures]

"We have not built a brain. What we have done is learn from the brain's anatomy and physiology," said study leader Dharmendra Modha, manager and lead researcher of the cognitive computing groupat IBM Research - Almaden in San Jose, California.

Modha gave an analogy to explain how the brainlike chip differs from a classical computer chip. You can think of a classical computer as a left-brained machine, he told Live Science; it's fast, sequential and good at crunching numbers. "What we're building is the counterpart, right-brain machine," he said.


Right-brained machine

Classical computers — from the first general-purpose electronic computer of the 1940s to today's advanced PCs and smartphones — use a model described by Hungarian-American mathematician and inventor John von Neumann in 1945. The Von Neumann architecture contains a processing unit, a control unit, memory, external storage, and input and output mechanisms. Because of its structure, the system cannot retrieve instructions and perform data operations at the same time.

In contrast, IBM's new chip architecture resembles that of a living brain. The chip is composed of computing cores that each contain 256 input lines, or "axons" (the cablelike part of a nerve cell that transmits electrical signals) and 256 output lines, or "neurons." Much like in a real brain, the artificial neurons only send signals, or spikes, when electrical charges reach a certain threshold.



IBM's TrueNorth chip can simulate simulate millions of the brain's neurons.


The researchers connected more than 4,000 of these cores on a single chip, and tested its performance with a complex image-recognition task. The computer had to detect people, bicyclists, cars and other vehicles in a photo, and identify each object correctly.

The project was a major undertaking, Modha said. "This is [the] work of a very large team, working across many years," he said. "It was a multidisciplinary, multi-institutional, multiyear effort."

The Defense Advanced Research Projects Agency (DARPA), the branch of the U.S. Department of Defense responsible for developing new technologies for the military, provided funding for the $53.5 million project. [Humanoid Robots to Flying Cars: 10 Coolest DARPA Projects]

After the team constructed the chip, Modha halted work for a month and offered a $1,000 bottle of champagne to any team member who could find a bug in the device. But nobody found one, he said.

The new chip is not only much more efficient than conventional computer chips, it also produces far less heat, the researchers said.

Today's computers — laptops, smartphones and even cars — suffer from visual and sensory impairment, Modha said. But if these devices can function more like a human brain, they may eventually understand their environments better, he said. For example, instead of moving a camera image onto a computer to process it, "the [camera] sensor becomes the computer," he said.


Building a brain

IBM researchers aren't the only ones building computer chips that mimic the brain. A group at Stanford University developed a system called "Neurogrid" that can simulate a million neurons and billions of synapses.

But while Neurogrid requires 16 chips linked together, the IBM chip can simulate the same number of neurons with only a single chip, Modha said. In addition, Neurogrid's memory is stored off-chip, but the new IBM system integrates both computation and memory on the same chip, which minimizes the time needed to transmit data, Modha said.

Kwabena Boahen, an electrical engineer at Stanford who led the development of the Neurogrid system, called the IBM chip "a very impressive achievement." (Several of Boahen's colleagues on the Neurogrid project have gone on to work at IBM, he said.)

The IBM team was able to fit more transistors onto a single chip, while making it very energy efficient, Boahen told Live Science. Greater energy efficiency means you could compute things directly on your phone instead of relying on cloud computing, the way Apple's voice-controlled Siri program operates, he said. That is, Siri outsources the computation to other computers via a network instead of performing it locally on a device.

IBM created the chip as part of DARPA's SyNAPSE program (short for Systems of Neuromorphic Adaptive Plastic Scalable Electronics). The goal of this initiative is to build a computer that resembles the form and function of the mammalian brain, with intelligence similar to acat or mouse.

"We've made a huge step forward," Modha said. The team mapped out the wiring diagram of a monkey brain in 2010, and produced a small-scale neural core in 2011. The current chip contains more 4,000 of these cores.

Still, the IBM chip is a far cry from a human brain, which contains about 86 trillion neurons and 100 trillion synapses. "We've come a long way, but there's a long way to go," Modha said.


http://news.yahoo.com/computer-chip-think-human-brain-180439396.html

Offline Buster's Uncle

  • Geo's kind, I unwind, HE'S the
  • Planetary Overmind
  • *
  • Posts: 51360
  • €233
  • View Inventory
  • Send /Gift
  • Because there are times when people just need a cute puppy  Soft kitty, warm kitty, little ball of fur  A WONDERFUL concept, Unity - & a 1-way trip that cost 400 trillion & 40 yrs.  
  • AC2 is my instrument, my heart, as I play my song.
  • Planet tales writer Smilie Artist Custom Faction Modder AC2 Wiki contributor Downloads Contributor
    • View Profile
    • My Custom Factions
    • Awards
Tiny chip mimics brain, delivers supercomputer speed
« Reply #1 on: August 08, 2014, 01:41:26 am »
Tiny chip mimics brain, delivers supercomputer speed
AFP
By Rob Lever  1 hour ago



A woman looks at a selection of brain specimens preserved in acrylic in London on March 27, 2012 (AFP Photo/Miguel Medina)



Washington (AFP) - Researchers Thursday unveiled a powerful new postage-stamp size chip delivering supercomputer performance using a process that mimics the human brain.

The so-called "neurosynaptic" chip is a breakthrough that opens a wide new range of computing possibilities from self-driving cars to artificial intelligence systems that can installed on a smartphone, the scientists say.

The researchers from IBM, Cornell Tech and collaborators from around the world said they took an entirely new approach in design compared with previous computer architecture, moving toward a system called "cognitive computing."

"We have taken inspiration from the cerebral cortex to design this chip," said IBM chief scientist for brain-inspired computing, Dharmendra Modha, referring to the command center of the brain.

He said existing computers trace their lineage back to machines from the 1940s which are essentially "sequential number-crunching calculators" that perform mathematical or "left brain" tasks but little else.

The new chip dubbed "TrueNorth" works to mimic the "right brain" functions of sensory processing -- responding to sights, smells and information from the environment to "learn" to respond in different situations, Modha said.

It accomplishes this task by using a huge network of "neurons" and "synapses," similar to how the human brain functions by using information gathered from the body's sensory organs.

The researchers designed TrueNorth with one million programmable neurons and 256 million programmable synapses, on a chip with 4,096 cores and 5.4 billion transistors.

A key to the performance is the extremely low energy use on the new chip, which runs on the equivalent energy of a hearing-aid battery.



The researchers from IBM, Cornell Tech and collaborators from around the world said they took an entirely new approach in design, moving toward a system called "cognitive computing" (AFP Photo/Odd Andersen)


- Sensor becomes the computer -

This can allow a chip installed in a car or smartphone to perform supercomputer calculations in real time without connecting to the cloud or other network.

"The sensor becomes the computer," Modha told AFP in a phone interview.

"You could have better sensory processors without the connection to Wi-Fi or the cloud.

This would allow a self-driving vehicle, for example, to detect problems and deal with them even if its data connection is broken.

"It can see an accident about to happen," Modha said.

Similarly, a mobile phone can take smells or visual information and interpret them in real time, without the need for a network connection.

"After years of collaboration with IBM, we are now a step closer to building a computer similar to our brain," said Rajit Manohar, a researcher at Cornell Tech, a graduate school of Cornell University.

The project funded by the US Defense Advanced Research Projects Agency (DARPA) published its research in a cover article on the August 8 edition of the journal Science.

The researchers say TrueNorth in some ways outperforms today's supercomputers although a direct comparison is not possible because they operate differently.

But they wrote that TrueNorth can deliver from 46 billion to 400 billion "synaptic" calculations per second per watt of energy. That compares with the most energy-efficient supercomputer which delivers 4.5 billion "floating point" calculations per second and per watt.

The chip was fabricated using Samsung’s 28-nanometer process technology.

"It is an astonishing achievement to leverage a process traditionally used for commercially available, low-power mobile devices to deliver a chip that emulates the human brain by processing extreme amounts of sensory information with very little power," said Shawn Han of Samsung Electronics, in a statement.

"This is a huge architectural breakthrough that is essential as the industry moves toward the next-generation cloud and big-data processing."

Modha said the researchers have produced only the chip and that it could be years before commercial applications become available.

But he said it "has the potential to transform society" with a new generation of computing technology. And he noted that hybrid computers may be able to one day combine the "left brain" machines with the new "right brain" devices for even better performance.


http://news.yahoo.com/tiny-chip-mimics-brain-delivers-supercomputer-speed-224757557.html

 

* User

Welcome, Guest. Please login or register.
Did you miss your activation email?


Login with username, password and session length

Select language:

* Community poll

SMAC v.4 SMAX v.2 (or previous versions)
-=-
24 (7%)
XP Compatibility patch
-=-
9 (2%)
Gog version for Windows
-=-
106 (33%)
Scient (unofficial) patch
-=-
40 (12%)
Kyrub's latest patch
-=-
14 (4%)
Yitzi's latest patch
-=-
89 (28%)
AC for Mac
-=-
3 (0%)
AC for Linux
-=-
5 (1%)
Gog version for Mac
-=-
10 (3%)
No patch
-=-
16 (5%)
Total Members Voted: 316
AC2 Wiki Logo
-click pic for wik-

* Random quote

A handsome young cyborg named Ace,
Wooed women at every base,
But once ladies glanced at his special enhancement,
They vanished with nary a trace.
~Barracks Graffiti, Sparta Command

* Select your theme

*
Templates: 5: index (default), PortaMx/Mainindex (default), PortaMx/Frames (default), Display (default), GenericControls (default).
Sub templates: 8: init, html_above, body_above, portamx_above, main, portamx_below, body_below, html_below.
Language files: 4: index+Modifications.english (default), TopicRating/.english (default), PortaMx/PortaMx.english (default), OharaYTEmbed.english (default).
Style sheets: 0: .
Files included: 45 - 1228KB. (show)
Queries used: 36.

[Show Queries]