Author Topic: U.S. scientists achieve 'turning point' in fusion energy quest  (Read 593 times)

0 Members and 1 Guest are viewing this topic.

Online Buster's Uncle

  • Geo's kind, I unwind, HE'S the
  • Planetary Overmind
  • *
  • Posts: 51198
  • €890
  • View Inventory
  • Send /Gift
  • Because there are times when people just need a cute puppy  Soft kitty, warm kitty, little ball of fur  A WONDERFUL concept, Unity - & a 1-way trip that cost 400 trillion & 40 yrs.  
  • AC2 is my instrument, my heart, as I play my song.
  • Planet tales writer Smilie Artist Custom Faction Modder AC2 Wiki contributor Downloads Contributor
    • View Profile
    • My Custom Factions
    • Awards
U.S. scientists achieve 'turning point' in fusion energy quest
« on: February 12, 2014, 08:25:34 pm »
U.S. scientists achieve 'turning point' in fusion energy quest
Reuters
By Will Dunham  2 hours ago



WASHINGTON (Reuters) - U.S. scientists announced on Wednesday an important milestone in the costly, decades-old quest to develop fusion energy, which, if harnessed successfully, promises a nearly inexhaustible energy source for future generations.

For the first time, experiments have produced more energy from fusion reactions than the amount of energy put into the fusion fuel, scientists at the federally funded Lawrence Livermore National Laboratory in California said.

The researchers, led by physicist Omar Hurricane, described the achievement as important but said much more work is needed before fusion can become a viable energy source. They noted that did not produce self-heating nuclear fusion, known as ignition, that would be needed for any fusion power plant.

Researchers have faced daunting scientific and engineering challenges in trying to develop nuclear fusion - the process that powers stars including our sun - for use by humankind.

"Really for the first time anywhere, we've gotten more energy out of this fuel than was put into the fuel. And that's quite unique. And that's kind of a major turning point, in a lot of our minds," Hurricane told reporters.

"I think a lot of people are jazzed."

Unlike fossil fuels or the fission process in nuclear power plants, fusion offers the prospect of abundant energy without pollution, radioactive waste or greenhouse gases.

Unlike the current nuclear fission energy that is derived from splitting atoms, fusion energy is produced by fusing atoms together.

Experts believe it still will be many years or decades before fusion can become a practical energy source.

"I wish I could put a date on it," said Hurricane. "But it really is (just) research. And, you know, although we're doing pretty good, we'd be lying to you if we told you a date."

Of the uncertain path ahead in fusion research, Hurricane compared it to "climbing half way up a mountain, but the top of the mountain is hidden in clouds. You can't see it. You don't have a map".

The research was conducted at the laboratory's National Ignition Facility (NIF), which was completed in 2009.


ZAP A TINY TARGET

The scientists used 192 laser beams to zap a tiny target containing a capsule less than a tenth of an inch (about 2 mm) in diameter filled with fusion fuel, consisting of a plasma of deuterium and tritium, which are two isotopes, or forms, of hydrogen.

The fuel was coated on the inside of the capsule in a frozen layer less than the width of a human hair.

At very high temperatures, the nucleus of the deuterium and the nucleus of the tritium fuse, a neutron and something known as an "alpha particle" emerge, and energy is released.

The experiments, published in the journal Nature, created conditions up to three times the density of the sun.

In two experiments described by the researchers that took place in September and November of last year, more energy came out of the fusion fuel than was deposited into it, but it was still less than the total amount deposited into the target.

The deuterium-tritium implosions were more stable than previously achieved. The researchers did so by doubling the laser power earlier in the laser pulse than in earlier tries.

The fusion-energy yield was increased by about tenfold from past experiments, in a series that started last May. One of the experiments produced more than half of the so-called Lawson criteria needed to reach ignition - but only about one-100th of the energy needed for ignition.

Lawrence Livermore National Laboratory, located about 45 miles (70 km) east of San Francisco, is overseen by the National Nuclear Security Administration, an agency of the U.S. Department of Energy.

Eager to exploit the potential this type of energy offers to reduce dependence on oil and other fossil fuels, the United States and other nations have invested many millions of dollars into fusion research, often with uneven results.

There are two main approaches. This team focuses on what's known as inertial confinement fusion energy - using lasers to compress fuel pellets, which triggers fusion reactions.

Other labs like the Culham Centre for Fusion Energy, which is the British national laboratory for fusion research, and the Princeton Plasma Physics Laboratory in New Jersey focus on magnetic confinement fusion energy - putting plasma in a magnetic container and heating it up until nuclei fuse.

Steve Cowley, director of the Culham Centre, called new findings "truly excellent" but said different measures of success make it hard to compare with his type of research.

"We have waited 60 years to get close to controlled fusion, and we are now close in both magnetic and inertial confinement research. We must keep at it," Cowley said in a statement.

Mark Herrmann, a fusion researcher at Sandia National Laboratories in New Mexico which is also overseen by the U.S. National Nuclear Security Administration, called the new findings important, but sees a "very long road to assessing the viability of fusion as a long-term energy source".

"I believe a compact carbon-free energy source is very important for humankind in the long term," he said by email.

"Fusion is one bet. If it pays off, the return will be big."


http://news.yahoo.com/u-scientists-achieve-turning-point-181011448.html

Online Buster's Uncle

  • Geo's kind, I unwind, HE'S the
  • Planetary Overmind
  • *
  • Posts: 51198
  • €890
  • View Inventory
  • Send /Gift
  • Because there are times when people just need a cute puppy  Soft kitty, warm kitty, little ball of fur  A WONDERFUL concept, Unity - & a 1-way trip that cost 400 trillion & 40 yrs.  
  • AC2 is my instrument, my heart, as I play my song.
  • Planet tales writer Smilie Artist Custom Faction Modder AC2 Wiki contributor Downloads Contributor
    • View Profile
    • My Custom Factions
    • Awards
Quest for pollution-free fusion energy takes major step
« Reply #1 on: February 12, 2014, 08:48:14 pm »
Quest for pollution-free fusion energy takes major step
Wendy Koch, USA TODAY 1:48 p.m. EST February 12, 2014


What if we could develop an unlimited source of carbon-free energy? Scientists working on one such source, fusion, say they're making progress but don't know when they'll be finished.



(Photo: Lawrence Livermore National Laboratory)


The decades-long quest to develop a pollution-free energy source via nuclear fusion — the power source of the sun and other stars — has taken what scientists say is a major step forward.

For the first time, a study today reports, a laboratory experiment got more energy out of fusion than was put into the fuel that sparked the reaction. It fell short, though, of what's considered the holy grail of fusion: "ignition" — the point at which more energy is produced than was used throughout the process.

"We're closer than anyone's gotten before," says Omar Hurricane, a physicist at the federally funded Lawrence Livermore National Laboratory and lead author of the study that appears in the peer-reviewed journal Nature. "It does show there's promise."

Hurricane says he doesn't know how long it will take to make fusion, a process that emits no heat-trapping carbon dioxide, a viable energy source. "Picture yourself halfway up a mountain, but the mountain is covered in clouds," he told reporters, adding the climber doesn't know what's behind him and the peak.

"This isn't like building a bridge," he says in an interview. "This is an exceedingly hard problem. You're basically trying to produce a star, on a small scale, here on Earth." Fusion, a process that heats the sun, produces energy when atomic nuclei fuse and form a heavier atom.

For decades, scientists have tried to achieve ignition, working with either magnets or lasers. Lawrence Livermore's National Ignition Facility, which opened in March 2009, has 192 laser beams housed in a 10-story building the size of three football fields. The beams can focus extreme amounts of energy in billionth-of-a-second pulses on a minuscule target.



To create a fusion reaction, scientists at the Lawrence Livermore National Laboratory use 192 lasers to direct energy inside a gold cylinder, which is about the size of a dime. A tiny capsule inside the cylinder contains atoms of deuterium and tritium, both hydrogen isotopes, that fuel the ignition process.(Photo: Courtesy of Lawrence Livermore National Laboratory)


Hurricane's team used these 192 lasers to heat and compress a small pellet of fuel, contained in a plastic capsule, to a point that nuclear fusion reactions occurred.

Hurricane says the energy produced was twice the amount that was put into the capsule's fuel but only about 1% of that delivered by the lasers to the target to get the process started.

Co-author Debbie Callahan says the capsule had to be compressed 35 times to trigger a reaction — akin to compressing a basketball to the size of a pea. Other study co-authors include 19 additional Livermore physicists (four of whom are women) and John Kline of Los Alamos National Laboratory.

"These results are still a long way from ignition, but they represent a significant step forward in fusion research," says Mark Herrmann of the Sandia National Laboratories' Pulsed Power Sciences Center in an accompanying Nature article. "Achieving pressures this large, even for vanishingly short times, is no easy task."

Steve Cowley, who's working with magnets as director of the United Kingdom's Culham Center for Fusion Energy, said the paper is "truly excellent" for addressing the core problem of instability. "By pushing (the lasers) in a softer manner ... they get a nearly stable compression," he says in an e-mail.

"We have waited 60 years to get close to controlled fusion," he says, adding scientists are "now close" with both magnets and lasers. "We must keep at it."


http://www.usatoday.com/story/news/nation/2014/02/12/fusion-energy-gets-boost/5417503/

 

* User

Welcome, Guest. Please login or register.
Did you miss your activation email?


Login with username, password and session length

Select language:

* Community poll

SMAC v.4 SMAX v.2 (or previous versions)
-=-
24 (7%)
XP Compatibility patch
-=-
9 (2%)
Gog version for Windows
-=-
106 (33%)
Scient (unofficial) patch
-=-
40 (12%)
Kyrub's latest patch
-=-
14 (4%)
Yitzi's latest patch
-=-
89 (28%)
AC for Mac
-=-
3 (0%)
AC for Linux
-=-
5 (1%)
Gog version for Mac
-=-
10 (3%)
No patch
-=-
16 (5%)
Total Members Voted: 316
AC2 Wiki Logo
-click pic for wik-

* Random quote

I sit in my cubicle, here on the motherworld. When I die, they will put me in a box and dispose of it in the cold ground. And in all the million ages to come, I will never breathe, or laugh, or twitch again. So won't you run and play with me here among the teeming mass of humanity? The universe has spared us this moment.
~Anonymous, Datalinks

* Select your theme

*
Templates: 5: index (default), PortaMx/Mainindex (default), PortaMx/Frames (default), Display (default), GenericControls (default).
Sub templates: 8: init, html_above, body_above, portamx_above, main, portamx_below, body_below, html_below.
Language files: 4: index+Modifications.english (default), TopicRating/.english (default), PortaMx/PortaMx.english (default), OharaYTEmbed.english (default).
Style sheets: 0: .
Files included: 45 - 1228KB. (show)
Queries used: 35.

[Show Queries]