Author Topic: Massive Star Explosion Seeded the Early Solar System, Meteorite Study Suggests  (Read 679 times)

0 Members and 1 Guest are viewing this topic.

Offline Buster's Uncle

  • Geo's kind, I unwind, HE'S the
  • Planetary Overmind
  • *
  • Posts: 50955
  • €852
  • View Inventory
  • Send /Gift
  • Because there are times when people just need a cute puppy  Soft kitty, warm kitty, little ball of fur  A WONDERFUL concept, Unity - & a 1-way trip that cost 400 trillion & 40 yrs.  
  • AC2 is my instrument, my heart, as I play my song.
  • Planet tales writer Smilie Artist Custom Faction Modder AC2 Wiki contributor Downloads Contributor
    • View Profile
    • My Custom Factions
    • Awards
Massive Star Explosion Seeded the Early Solar System, Meteorite Study Suggests
by Charles Q. Choi, SPACE.com Contributor   |   October 12, 2013 10:00am ET


A supernova could have shot matter into the early solar system, a new study shows.  Credit: NASA/ESA/JPL-Caltech/UCLA/CXC/SAO

 
 
The explosive death of a star seeded matter into the solar system soon after its birth, analysis of a meteorite now reveals.

Earth and the rest of the solar system coalesced from a giant cloud of gas and dust more than 4.5 billion years ago. Many of the details about the galactic neighborhood in which the solar system arose still remain a mystery.

Meteorites contain some of the oldest material in the solar system, dating back to its formation. As such, researchers often analyze these objects in order to discover what materials were present when the sun, Earth and other planets were born. This study sheds light on where these solar system bodies might have come from.

All elements heavier than nickel are ultimately created by supernovas, giant explosions resulting from the deaths of stars. These explosions are bright enough to momentarily outshine their entire galaxies. Now, scientists analyzing meteorites have found that a supernova may have injected matter into the solar system within a small window of time after the solar system's first solids formed.

"This is evidence for supernova addition at the very start of our solar system, over 4.5 billion years ago," said the meteorite study's lead author,Gregory Brennecka, a cosmochemist at Lawrence Livermore National Laboratory.

Brennecka and his colleagues investigated the Allende meteorite, which fell to Earth as a fireball in Mexico in 1969. Theyfocused on lumps within this meteorite known as calcium-aluminum-rich inclusions. These particles are some of the oldest objects in the solar system — they were the first solids to form in the protoplanetary disk that eventually gave rise to Earth and the other planets.

The scientists focused on a wide range of isotopes within the inclusions. In general, elements come in a variety of isotopes that differ in how many neutrons they possess in their atomic nuclei; carbon-12 has six neutrons, while carbon-13 has seven. (Both have six protons.)

Brennecka and his colleagues discovered these inclusions all had similar concentrations of isotopes. However, the concentrations were distinct from the average composition of the materials that make up the bulk of meteorites and the Earth.

The researchers propose the inclusions formed close to the young sun, possibly within a span as short as 20,000 to 50,000 years. As such, matter from a nearby supernova did not pollute these inclusions, as it did the outer regions of the protoplanetary disk. The inclusions later mixed with the material that went on to make the Allende meteorite and other rocks.

"Not only do we know that the supernova happened, we can see what material was injected and how it changed the elemental and isotopic composition of our solar system," Brennecka told SPACE.com.

These findings are consistent with the notion that the solar system developed in an active star-forming region of the galaxy. Stellar nurseries are often home to stars that go supernova.

Future research can aim to better understand the fingerprints of this supernova in other samples "and how much influence it and possible other supernovae had on the development of our solar system," Brennecka said.

Brennecka and his colleagues Lars Borg and Meenakshi Wadhwa detailed their findings online Oct. 7 in the journal Proceedings of the National Academy of Sciences.


http://www.space.com/23164-supernova-explosion-seeded-solar-system-meteorites.html

 

* User

Welcome, Guest. Please login or register.
Did you miss your activation email?


Login with username, password and session length

Select language:

* Community poll

SMAC v.4 SMAX v.2 (or previous versions)
-=-
24 (7%)
XP Compatibility patch
-=-
9 (2%)
Gog version for Windows
-=-
105 (33%)
Scient (unofficial) patch
-=-
40 (12%)
Kyrub's latest patch
-=-
14 (4%)
Yitzi's latest patch
-=-
89 (28%)
AC for Mac
-=-
3 (0%)
AC for Linux
-=-
5 (1%)
Gog version for Mac
-=-
10 (3%)
No patch
-=-
16 (5%)
Total Members Voted: 315
AC2 Wiki Logo
-click pic for wik-

* Random quote

The Mind Worms are the natural defenses of the living Planet?the white blood cells, if you will. In a world in which unassimilated thought represents danger, the Mind Worm seeks out concentrations of sentient mental energy and destroys them, ruthlessly and efficiently.
~Commissioner Pravin Lal 'Mind Worm, Mind Worm'

* Select your theme

*
Templates: 5: index (default), PortaMx/Mainindex (default), PortaMx/Frames (default), Display (default), GenericControls (default).
Sub templates: 8: init, html_above, body_above, portamx_above, main, portamx_below, body_below, html_below.
Language files: 4: index+Modifications.english (default), TopicRating/.english (default), PortaMx/PortaMx.english (default), OharaYTEmbed.english (default).
Style sheets: 0: .
Files included: 45 - 1228KB. (show)
Queries used: 35.

[Show Queries]