Author Topic: Supermassive black hole dust is denser than we thought  (Read 427 times)

0 Members and 1 Guest are viewing this topic.

Online Buster's Uncle

  • With community service, I
  • Ascend
  • *
  • Posts: 49634
  • €683
  • View Inventory
  • Send /Gift
  • Because there are times when people just need a cute puppy  Soft kitty, warm kitty, little ball of fur  A WONDERFUL concept, Unity - & a 1-way trip that cost 400 trillion & 40 yrs.  
  • AC2 is my instrument, my heart, as I play my song.
  • Planet tales writer Smilie Artist Custom Faction Modder AC2 Wiki contributor Downloads Contributor
    • View Profile
    • My Custom Factions
    • Awards
Supermassive black hole dust is denser than we thought
« on: June 19, 2017, 04:08:27 pm »
Supermassive black hole dust is denser than we thought
Engadget
Swapna Krishna  June 19, 2017






The majority of galaxies have a supermassive black hole at their core. And, like our own Milky Way version, most of these black holes are relatively quiet. However, a minority of supermassive black holes are incredibly active, consuming dust, gas, and other matter at an extraordinary rate and emitting large amounts of energy. Scientists call these black holes active galactic nuclei.

Generally, these active galactic nuclei all look the same, with a donut-shaped ring of dust, or a torus, surrounding the black hole. Now, scientists have determined that the tori around active supermassive black holes are actually much smaller than originally theorized. The study will be published in Monthly Notices of the Royal Astronomical Society.

The team used the SOFIA telescope (a Boeing 747SP modified to carry a 100-inch diameter telescope) to examine the infrared emissions of 11 different active galactic nuclei over 100 million miles away. They discovered that the peak infrared emissions are at even longer wavelengths and that the tori are more compact, to the tune of 30%, than scientists originally thought.

While this is certainly an interesting observation, it has larger implications for future detection and observation of black holes. By pinpointing these longer wavelengths that tori absorb and reemit energy at, scientists are able to determine the best way to observe them. Water vapor actually obscures these longer wavelengths within the Earth's atmosphere, so future work on active galactic nuclei should be mostly conducted through SOFIA or other telescopes that operate above our planet's water vapor. The team's next step is to determine whether all of these emissions indeed originate from tori, or whether there's something else within the structure of active galactic nuclei that is responsible for part of these signals.

arXiv.org


https://finance.yahoo.com/news/supermassive-black-hole-dust-denser-140900019.html

 

* User

Welcome, Guest. Please login or register.

Login with username, password and session length

Select language:

* Community poll

SMAC v.4 SMAX v.2 (or previous versions)
-=-
24 (7%)
XP Compatibility patch
-=-
9 (2%)
Gog version for Windows
-=-
103 (32%)
Scient (unofficial) patch
-=-
40 (12%)
Kyrub's latest patch
-=-
14 (4%)
Yitzi's latest patch
-=-
89 (28%)
AC for Mac
-=-
3 (0%)
AC for Linux
-=-
6 (1%)
Gog version for Mac
-=-
10 (3%)
No patch
-=-
16 (5%)
Total Members Voted: 314
AC2 Wiki Logo
-click pic for wik-

* Random quote

God does not play dice.
~Albert Einstein

* Select your theme

*
Templates: 5: index (default), PortaMx/Mainindex (default), PortaMx/Frames (default), Display (default), GenericControls (default).
Sub templates: 8: init, html_above, body_above, portamx_above, main, portamx_below, body_below, html_below.
Language files: 4: index+Modifications.english (default), TopicRating/.english (default), PortaMx/PortaMx.english (default), OharaYTEmbed.english (default).
Style sheets: 0: .
Files included: 45 - 1228KB. (show)
Queries used: 35.

[Show Queries]