Author Topic: Missing Parts? Salamander Regeneration Secret Revealed  (Read 715 times)

0 Members and 1 Guest are viewing this topic.

Online Buster's Uncle

  • Geo's kind, I unwind, HE'S the
  • Planetary Overmind
  • *
  • Posts: 50757
  • €283
  • View Inventory
  • Send /Gift
  • Because there are times when people just need a cute puppy  Soft kitty, warm kitty, little ball of fur  A WONDERFUL concept, Unity - & a 1-way trip that cost 400 trillion & 40 yrs.  
  • AC2 is my instrument, my heart, as I play my song.
  • Planet tales writer Smilie Artist Custom Faction Modder AC2 Wiki contributor Downloads Contributor
    • View Profile
    • My Custom Factions
    • Awards
Missing Parts? Salamander Regeneration Secret Revealed
« on: May 21, 2013, 03:22:01 pm »
Quote
Missing Parts? Salamander Regeneration Secret Revealed
By Tanya Lewis, LiveScience Staff Writer  | LiveScience.com – 18 hrs ago..


 
Salamanders can regrow entire limbs and regenerate parts of major organs, an ability that relies on their immune systems, research now shows.

A study of the axolotl (Ambystoma mexicanum), an aquatic salamander, reveals that immune cells called macrophages are critical in the early stages of regenerating lost limbs. Wiping out these cells permanently prevented regeneration and led to tissue scarring. The findings hint at possible strategies for tissue repair in humans.

"We can look to salamanders as a template of what perfect regeneration looks like," lead study author James Godwin said in a statement. "We need to know exactly what salamanders do and how they do it well, so we can reverse-engineer that into human therapies," added Goodwin, of the Australian Regenerative Medicine Institute (ARMI) at Monash University in Melbourne.

In mammals, macrophage cells play an important role in the immune system response to injury, arriving at a wound within two to four days. There, they engulf and digest pathogens, or infectious particles, and generate both inflammatory and anti-inflammatory signals for healing.

Now, Godwin and his colleagues have shown that macrophages are essential for salamanders' superherolike ability to sprout new limbs. The researchers studied the biochemical processes that occurred in salamanders at the site of a limb amputation. They then wiped out some or all of the macrophage cells to determine whether these cells were essential for regrowing the limbs.

Signals of inflammation were detected at the wound sites within one day of the amputations. Unexpectedly, anti-inflammatory signals, which normally arrive later in mammals recovering from injury, were also present at that time. Along with these signals, the researchers detected macrophages at the wound, peaking in number around four to six days after the injury.

To investigate the role of macrophages in salamander limb regeneration, the researchers injected the animals with a chemical substance that destroys or "depletes" these cells. The macrophage levels were either partially or fully depleted.

Salamanders that had all their macrophages removed failed to generate new limbs and showed substantial scar-tissue buildup. Salamanders that had only some of their macrophages could still regenerate their limbs, but more slowly than normal.

Once the salamanders replenished their macrophage levels, the researchers re-amputated the animals' limb stumps, which then fully regenerated at the normal rate. Collectively, these findings suggest macrophages are essential to the salamanders' remarkable wound-healing abilities.

Studying the regenerative abilities of salamanders could offer insight into treating spinal cord and brain injuries in humans, the researchers say. Furthermore, the knowledge might lead to new treatments for heart and liver diseases or recovery from surgery, by preventing harmful scarring.

Macrophages are already known to play a vital role in organ and tissue development in mouse embryos. They produce small signaling molecules that activate other types of cells that promote the growth of new limbs and the healing of wounds.

Many animals may have a capability for tissue regeneration that has been turned off as the result of evolution, but it might be possible to reactivate the process, Godwin said.

The findings were detailed today (May 20) in the journal Proceedings of the National Academy of Sciences.
http://news.yahoo.com/missing-parts-salamander-regeneration-secret-revealed-191423661.html

 

* User

Welcome, Guest. Please login or register.

Login with username, password and session length

Select language:

* Community poll

SMAC v.4 SMAX v.2 (or previous versions)
-=-
24 (7%)
XP Compatibility patch
-=-
9 (2%)
Gog version for Windows
-=-
105 (33%)
Scient (unofficial) patch
-=-
40 (12%)
Kyrub's latest patch
-=-
14 (4%)
Yitzi's latest patch
-=-
89 (28%)
AC for Mac
-=-
3 (0%)
AC for Linux
-=-
5 (1%)
Gog version for Mac
-=-
10 (3%)
No patch
-=-
16 (5%)
Total Members Voted: 315
AC2 Wiki Logo
-click pic for wik-

* Random quote

And what of the immortal soul in such transactions? Can this machine transmit and reattach it as well? Or is it lost forever, leaving a soulless body to wander the world in despair?
~Sister Miriam Godwinson 'We must Dissent'

* Select your theme

*
Templates: 5: index (default), PortaMx/Mainindex (default), PortaMx/Frames (default), Display (default), GenericControls (default).
Sub templates: 8: init, html_above, body_above, portamx_above, main, portamx_below, body_below, html_below.
Language files: 4: index+Modifications.english (default), TopicRating/.english (default), PortaMx/PortaMx.english (default), OharaYTEmbed.english (default).
Style sheets: 0: .
Files included: 47 - 1280KB. (show)
Queries used: 40.

[Show Queries]