Author Topic: Physical constant is constant even in strong gravitational fields  (Read 277 times)

0 Members and 1 Guest are viewing this topic.

Offline Buster's Uncle

  • Geo's kind, I unwind, HE'S the
  • Planetary Overmind
  • *
  • Posts: 51323
  • €606
  • View Inventory
  • Send /Gift
  • Because there are times when people just need a cute puppy  Soft kitty, warm kitty, little ball of fur  A WONDERFUL concept, Unity - & a 1-way trip that cost 400 trillion & 40 yrs.  
  • AC2 is my instrument, my heart, as I play my song.
  • Planet tales writer Smilie Artist Custom Faction Modder AC2 Wiki contributor Downloads Contributor
    • View Profile
    • My Custom Factions
    • Awards
Physical constant is constant even in strong gravitational fields
« on: September 19, 2014, 06:34:17 pm »
Physical constant is constant even in strong gravitational fields
Phys.org
13 hours ago by Ans Hekkenberg



Picture of the laser system with which the hydrogen molecules were investigated on earth. Credit: LaserLaB VU University Amsterdam/Wim Ubachs



An international team of physicists has shown that the mass ratio between protons and electrons is the same in weak and in very strong gravitational fields. Their study, which was partly funded by the FOM Foundation, is published online on 18 September 2014 in Physical Review Letters.

The idea that the laws of physics and its fundamental constants do not depend on local circumstances is called the equivalence principle. This principle is a cornerstone to Einstein's theory of general relativity. To put the principle to the test, FOM physicists working at the LaserLaB at VU University Amsterdam determined whether one fundamental constant, the mass ratio between protons and electrons , depends on the strength of the gravitational field that the particles are in.


Laboratories on earth and in space

The researchers compared the proton-electron mass ratio near the surface of a white dwarf star to the mass ratio in a laboratory on Earth. White dwarfs stars, which are in a late stage of their life cycle, have collapsed to less than 1% of their original size. The gravitational field at the surface of these stars is therefore much larger than that on earth, by a factor of 10,000. The physicists concluded that even these strong gravitational conditions, the proton-electron mass ratio is the same within a margin of 0.005%. In both cases, the proton mass is 1836.152672 times as big as the electron mass.


Absorption spectra

To reach their conclusion, the Dutch physicists collaborated with astronomers of the University of Leicester, the University of Cambridge and the Swinburne University of Technology in Melbourne. The team analysed absorption spectra of hydrogen molecules in white dwarf photospheres (the outer shell of a star from which light is radiated). The spectra were then compared to spectra obtained with a laser at LaserLaB in Amsterdam.

Absorption spectra reveal which radiation frequencies are absorbed by a particle. A small deviation of the proton-electron mass ration would affect the structure of the molecule, and therefore the absorption spectrum as well. However, the comparison revealed that the spectra were very similar, which proves that the value of the proton-electron mass ratio is indeed independent of the strength of the gravitation field.


Rock-solid

FOM PhD student Julija Bagdonaite: "Previously, we confirmed the constancy of this fundamental constant on a cosmological time scale with the Very Large Telescope in Chile. Now we searched for a dependence on strong gravitational fields using the Hubble Space Telescope. Gradually we find that the fundamental constants seem to be rock-solid and eternal."


Explore further: Variables of nature

More information: Limits on a Gravitational field Dependence of the Proton-to-Electron Mass Ratio from H2 in White Dwarf Stars, Physical Review Letters, 18 September 2014. Paper on ArXiv: arxiv.org/abs/1409.1000

 

Journal reference:  Physical Review Letters  arXiv


 Read more at: http://phys.org/news/2014-09-physical-constant-strong-gravitational-fields.html#jCp

 

* User

Welcome, Guest. Please login or register.
Did you miss your activation email?


Login with username, password and session length

Select language:

* Community poll

SMAC v.4 SMAX v.2 (or previous versions)
-=-
24 (7%)
XP Compatibility patch
-=-
9 (2%)
Gog version for Windows
-=-
106 (33%)
Scient (unofficial) patch
-=-
40 (12%)
Kyrub's latest patch
-=-
14 (4%)
Yitzi's latest patch
-=-
89 (28%)
AC for Mac
-=-
3 (0%)
AC for Linux
-=-
5 (1%)
Gog version for Mac
-=-
10 (3%)
No patch
-=-
16 (5%)
Total Members Voted: 316
AC2 Wiki Logo
-click pic for wik-

* Random quote

The happy life is thought to be one of excellence.. now an excellent life requires exertion, and does not consist of amusement. If Eudaimonia, or happiness, is activity in accordance with excellence, it is reasonable that it should in accordance with the highest excellence, and this will be that of the best thing in us.
~Aristotle 'Nichomachean Ethics', Datalinks

* Select your theme

*
Templates: 5: index (default), PortaMx/Mainindex (default), PortaMx/Frames (default), Display (default), GenericControls (default).
Sub templates: 8: init, html_above, body_above, portamx_above, main, portamx_below, body_below, html_below.
Language files: 4: index+Modifications.english (default), TopicRating/.english (default), PortaMx/PortaMx.english (default), OharaYTEmbed.english (default).
Style sheets: 0: .
Files included: 47 - 1280KB. (show)
Queries used: 40.

[Show Queries]