Author Topic: New Clues Into Mystery of Mars Meteorites & Rocks Revealed  (Read 995 times)

0 Members and 1 Guest are viewing this topic.

Offline Buster's Uncle

  • Geo's kind, I unwind, HE'S the
  • Planetary Overmind
  • *
  • Posts: 50763
  • €295
  • View Inventory
  • Send /Gift
  • Because there are times when people just need a cute puppy  Soft kitty, warm kitty, little ball of fur  A WONDERFUL concept, Unity - & a 1-way trip that cost 400 trillion & 40 yrs.  
  • AC2 is my instrument, my heart, as I play my song.
  • Planet tales writer Smilie Artist Custom Faction Modder AC2 Wiki contributor Downloads Contributor
    • View Profile
    • My Custom Factions
    • Awards
New Clues Into Mystery of Mars Meteorites & Rocks Revealed
« on: June 20, 2013, 09:39:16 pm »
Quote
New Clues Into Mystery of Mars Meteorites & Rocks Revealed
By Miriam Kramer | SPACE.com – Wed, Jun 19, 2013..


The rear of the stone from the Tissint Martian meteorite is almost completely covered with a glossy black fusion crust.


A study published in November 2012 that analyzed Martian meteorites found that Earth and the Red Planet share similar formation histories.


This piece of hardened lava came from Mars. After being knocked off the Martian surface by an asteroid or comet, it drifted in space for millions of years, until it reached Earth and fell to the ground as a meteorite.

 
Scientists are a step closer to reconciling a mystery on Mars, a cosmic oddity centered on Martian rocks and pieces of the Red Planet discovered on Earth.

The composition of meteorites long suspected to come from Mars have confounded scientists for a long time. Planetary scientists know that rocks sampled from the Martian surface are high in nickel, yet the Martian meteorites (known as the SNC meteorites) happen to have significantly less nickel than those other sampled rocks.

Now, a new study unveiled today (June 19) may help explain why the rocks are chemically different yet still hail from the same planet.

"The Spirit rover in the Gusev crater found nickel concentrations five times as high in the crater than in the meteorites," Bernard Wood, a geologist at the University of Oxford and lead author of the study, said.


It's in the oxygen

Wood and his team found that oxygen is a key element that  could explain the chemical components of these rocks.

The older rocks sampled by the Spirit rover (in operation on Mars until 2010) formed under more oxygen-rich conditions, while the young meteorites were crafted in a low-oxygen environment, according to Wood's model.

"[In Wood's model] the upper mantle of Mars was more oxidized than the lower mantel, so when you partially melt the upper mantle, you get these ancient rock compositions and when you partially melt the less oxidized lower mantel, you get the Martian meteorite compositions," said Hap McSween, a planetary geologist at the University of Tennessee who is unaffiliated with the study.

When the volcanic liquids that produced the SNC meteorites were formed under low-oxygen conditions in Mars' interior, sulfides remained behind as the liquids rose, leaving nickel trapped in the deep interior. The volcanic rocks were therefore low in nickel, Wood said.

The surface rocks, found in the Gusev crater, were formed in a high-oxygen environment in Mars' interior where the sulfides — together with their nickel — dissolved in the volcanic liquid. The rocks are therefore nickel-rich.


A tectonic past?

The rocks in the Gusev crater formed more than 3.7 billion years ago while the SNC meteorites date back 118 million to 1.3 billion years, Wood said. This plays into the theories scientists have about Mars' past.

"It's still consistent with one idea of Mars, which is that it's sort of wet and warm … and the atmosphere was oxidized very early on, that's certainly an idea that's been kicking around for a long time," Wood told SPACE.com.

Wood applied his knowledge of Earth's geological processes to understand what might be happening on Mars.

"On Earth, we know that we cycle oxygen rich rocks into the Earth's interior through plate tectonics, through so-called subduction," Wood said. "The oxidized surface materials are pushed down into the interior and so we argue that’s a plausible explanation for Mars."

Although that explanation could account for why the older but oxygen-rich rocks were found in the upper mantle while the oxygen-poor rocks came from a deeper part of Mars' interior, McSween doesn't think there is necessarily evidence to support a tectonic past on Mars.

"Although there are some suggestions that Mars might have had plate tectonics at some point, there really is no evidence for it, but this is at least a suggestion that something presumably cycled oxidized materials from the surface back into the upper mantle and maybe that's in the cards here," McSween told SPACE.com.
http://news.yahoo.com/clues-mystery-mars-meteorites-rocks-revealed-171349828.html

 

* User

Welcome, Guest. Please login or register.

Login with username, password and session length

Select language:

* Community poll

SMAC v.4 SMAX v.2 (or previous versions)
-=-
24 (7%)
XP Compatibility patch
-=-
9 (2%)
Gog version for Windows
-=-
105 (33%)
Scient (unofficial) patch
-=-
40 (12%)
Kyrub's latest patch
-=-
14 (4%)
Yitzi's latest patch
-=-
89 (28%)
AC for Mac
-=-
3 (0%)
AC for Linux
-=-
5 (1%)
Gog version for Mac
-=-
10 (3%)
No patch
-=-
16 (5%)
Total Members Voted: 315
AC2 Wiki Logo
-click pic for wik-

* Random quote

In the great commons at Gaia's Landing we have a tall and particularly beautiful stand of white pine, planted at the time of the first colonies. It represents our promise to the people, and to Planet itself, never to repeat the tragedy of Earth.
~ Lady Deirdre Skye ’Planet Dreams’

* Select your theme

*
Templates: 5: index (default), PortaMx/Mainindex (default), PortaMx/Frames (default), Display (default), GenericControls (default).
Sub templates: 8: init, html_above, body_above, portamx_above, main, portamx_below, body_below, html_below.
Language files: 4: index+Modifications.english (default), TopicRating/.english (default), PortaMx/PortaMx.english (default), OharaYTEmbed.english (default).
Style sheets: 0: .
Files included: 45 - 1228KB. (show)
Queries used: 36.

[Show Queries]