Author Topic: Peer Inside an Asteroid: Peanut-Shaped Space Rock's Insides Revealed (Photos)  (Read 1318 times)

0 Members and 1 Guest are viewing this topic.

Online Buster's Uncle

  • Geo's kind, I unwind, HE'S the
  • Planetary Overmind
  • *
  • Posts: 51132
  • €755
  • View Inventory
  • Send /Gift
  • Because there are times when people just need a cute puppy  Soft kitty, warm kitty, little ball of fur  A WONDERFUL concept, Unity - & a 1-way trip that cost 400 trillion & 40 yrs.  
  • AC2 is my instrument, my heart, as I play my song.
  • Planet tales writer Smilie Artist Custom Faction Modder AC2 Wiki contributor Downloads Contributor
    • View Profile
    • My Custom Factions
    • Awards
Peer Inside an Asteroid: Peanut-Shaped Space Rock's Insides Revealed (Photos)
SPACE.com
by Miriam Kramer, Staff Writer  5 hours ago



Measurements taken by ESO’s New Technology Telescope combined with a model of asteroid Itokawa's surface topography reveal that different parts of this asteroid have different densities. The shape model used for this view is based on the images



The innards of an asteroid have been measured for the first time.

Scientists using a European Southern Observatory telescope have made precise measurements of Asteroid Itokawa's density. They discovered that different parts of the asteroid have different densities, giving the scientists clues about the asteroid's formation in the solar system. The researchers explain the strangely shaped asteroid Itokawa in a new video.

Itokawa is a stony composite asteroid. The peanut-shaped space rock is about 1,755 feet (535 meters) long on its longest side and takes about 556 days to orbit the sun. Scientists measured the density by studying images of Itokawa taken by the New Technology Telescope at the La Silla Observatory in Chile, as well as by other telescopes, from 2001 to 2013. Stephen Lowry, a researcher at the University of Kent, and his team measured how the brightness of the space rock varies during its rotation, ESO officials said.

"This is the first time we have ever been able to determine what it is like inside an asteroid," Lowry said in a statement. "We can see that Itokawa has a highly varied structure — this finding is a significant step forward in our understanding of rocky bodies in the solar system."

By looking at the change in Itokawa's brightness over time, the researchers tracked how the asteroid's spin period changed over time. By understanding that information plus its shape, the astronomers could also map the asteroid's interior density, ESO officials said.



This very detailed view shows the strange peanut-shaped asteroid Itokawa. This picture comes from the Japanese spacecraft Hayabusa during its close approach in 2005. Image released Feb. 5, 2014.


Lowry and his colleagues found that sunlight was actually affecting the way the asteroid spins. Thanks to some very precise measurements, the team found that Itokawa's rotation period changes by 0.045 seconds per year, ESO officials said. While this may seem like a miniscule amount, it's something that can only happen if the two halves of the peanut-shaped space rock have different densities.

Until now, scientists had estimated asteroid interior properties through overall density measurements, ESO officials said. Now that they know the internal structure of an asteroid can vary, scientists can try to work backward to see how the space rock formed. Scientists now think it's possible that two parts of a double asteroid crashed together and merged to create Itokawa, ESO officials said, although no one is sure exactly how it formed.

"Finding that asteroids don't have homogeneous interiors has far-reaching implications, particularly for models of binary asteroid formation," Lowry said in a statement. "It could also help with work on reducing the danger of asteroid collisions with Earth, or with plans for future trips to these rocky bodies.”

Japan's Hayabusa spacecraft collected tiny dust grains from Itokawa in 2005 during a 1.25 billion-mile (2 billion kilometers) mission that took seven years to complete. The probe returned to Earth with the space rock samples in 2010. The unmanned Hayabusa arrived at Itokawa when the asteroid was about 180 million miles (290 million km) from Earth.

Scientists in Japan are also considering a follow-up to the Hayabusa mission called Hayabusa 2. The new probe would launch to and sample 1999 JU3, a carbonaceous asteroid.





http://news.yahoo.com/peer-inside-asteroid-peanut-shaped-space-rock-39-152622833.html

 

* User

Welcome, Guest. Please login or register.
Did you miss your activation email?


Login with username, password and session length

Select language:

* Community poll

SMAC v.4 SMAX v.2 (or previous versions)
-=-
24 (7%)
XP Compatibility patch
-=-
9 (2%)
Gog version for Windows
-=-
105 (33%)
Scient (unofficial) patch
-=-
40 (12%)
Kyrub's latest patch
-=-
14 (4%)
Yitzi's latest patch
-=-
89 (28%)
AC for Mac
-=-
3 (0%)
AC for Linux
-=-
5 (1%)
Gog version for Mac
-=-
10 (3%)
No patch
-=-
16 (5%)
Total Members Voted: 315
AC2 Wiki Logo
-click pic for wik-

* Random quote

I hold a scrap of paper in the darkness and light it. I watch it burn bright and curl, disappearing into nothingness, and the heat burns my fingers. Where has it gone? What has it become? I cannot shake the feeling that I have witnessed a form of transcendence.
~Commissioner Pravin Lal 'The Convergence'

* Select your theme

*
Templates: 5: index (default), PortaMx/Mainindex (default), PortaMx/Frames (default), Display (default), GenericControls (default).
Sub templates: 8: init, html_above, body_above, portamx_above, main, portamx_below, body_below, html_below.
Language files: 4: index+Modifications.english (default), TopicRating/.english (default), PortaMx/PortaMx.english (default), OharaYTEmbed.english (default).
Style sheets: 0: .
Files included: 45 - 1228KB. (show)
Queries used: 36.

[Show Queries]