Author Topic: Ancient Mars Had Component Key to Life, Meteorite Reveals  (Read 656 times)

0 Members and 1 Guest are viewing this topic.

Online Buster's Uncle

  • Geo's kind, I unwind, HE'S the
  • Planetary Overmind
  • *
  • Posts: 50770
  • €435
  • View Inventory
  • Send /Gift
  • Because there are times when people just need a cute puppy  Soft kitty, warm kitty, little ball of fur  A WONDERFUL concept, Unity - & a 1-way trip that cost 400 trillion & 40 yrs.  
  • AC2 is my instrument, my heart, as I play my song.
  • Planet tales writer Smilie Artist Custom Faction Modder AC2 Wiki contributor Downloads Contributor
    • View Profile
    • My Custom Factions
    • Awards
Ancient Mars Had Component Key to Life, Meteorite Reveals
« on: June 12, 2013, 07:18:19 pm »
Quote
Ancient Mars Had Component Key to Life, Meteorite Reveals
By Megan Gannon | SPACE.com – 7 hrs ago..


Electron microscope image showing the 700-million-year-old Martian clay veins containing boron (100 µm = one tenth of a millimeter).

 
At a time when life as we know it was just getting its start on Earth, Martian clay may have harbored a key component for one of life's molecular building blocks, researchers say.

Boron found in a Martian meteorite suggests the Red Planet may once have had the right chemistry to give rise to RNA, according to a new study.

"In early life RNA is thought to have been the informational precursor to DNA," study researcher James Stephenson, an evolutionary biologist, said in a statement. [Mars Meteorites: Pieces of the Red Planet on Earth]

Billions of years ago, RNA may have been the first molecule to program information and pass it on to the next generation. Today, that task is DNA's domain. RNA, meanwhile, is responsible for carrying genetic information from DNA to proteins. Researchers believe the RNA sugar component, ribose, relies on borates (the oxidized form of boron) to form spontaneously.

"Borates may have been important for the origin of life on Earth because they can stabilize ribose, a crucial component of RNA," added Stephenson, who is a postdoctoral fellow at the University of Hawaii at Manoa NASA Astrobiology Institute (UHNAI).

Stephenson and cosmochemist Lydia Hallis, another UHNAI postdoctoral fellow, came up with the idea to look at boron in meteorites over an after-work beer.

"Given that boron has been implicated in the emergence of life, I had assumed that it was well characterized in meteorites," said Stephenson. "Discussing this with Dr. Hallis, I found out that it was barely studied. I was shocked and excited. She then informed me that both the samples and the specialized machinery needed to analyze them were available at UH."

The space rock at the center of the study was collected during the 2009-2010 field season of the Antarctic Search for Meteorites (ANSMET). This annual search aims to find dark rocks embedded in Antarctica's pale landscape that might be extraterrestrial in origin. The project is funded by NASA, the National Science Foundation and the Smithsonian Institution.

Stephenson, Hallis and colleagues pored over the veins of clay in a meteorite from Mars using the ion microprobe in the W. M. Keck Cosmochemistry Laboratory. They found that the boron concentrations in these clays were more than ten times higher than in any previously measured extraterrestrial object. The findings could also shed light on the early history of Earth, the researchers say.

"Earth and Mars used to have much more in common than they do today," Hallis said in a statement. "Over time, Mars has lost a lot of its atmosphere and surface water, but ancient meteorites preserve delicate clays from wetter periods in Mars' history. The Martian clay we studied is thought to be up to 700 million years old. The recycling of the Earth’s crust via plate tectonics has left no evidence of clays this old on our planet; hence Martian clays could provide essential information regarding environmental conditions on the early Earth."

While Martian meteorites deliver tantalizing clues about the Red Planet's ancient chemistry, NASA's fleet of Mars rovers, which currently includes Curiosity and Opportunity, have been studying the makeup of Mars dirt on location. Curiosity earlier this year found that Mars could have supported microbial life in the ancient past, based on a sample the 1-ton robot drilled out of a Martian rock. That sample contained chemical components thought to be critical to life, including sulfur, nitrogen, hydrogen, oxygen, phosphorus and carbon, researchers said.

The new research was detailed online June 6 in the journal PLOS One.
http://news.yahoo.com/ancient-mars-had-component-key-life-meteorite-reveals-105608043.html

 

* User

Welcome, Guest. Please login or register.

Login with username, password and session length

Select language:

* Community poll

SMAC v.4 SMAX v.2 (or previous versions)
-=-
24 (7%)
XP Compatibility patch
-=-
9 (2%)
Gog version for Windows
-=-
105 (33%)
Scient (unofficial) patch
-=-
40 (12%)
Kyrub's latest patch
-=-
14 (4%)
Yitzi's latest patch
-=-
89 (28%)
AC for Mac
-=-
3 (0%)
AC for Linux
-=-
5 (1%)
Gog version for Mac
-=-
10 (3%)
No patch
-=-
16 (5%)
Total Members Voted: 315
AC2 Wiki Logo
-click pic for wik-

* Random quote

Yes, yes, we've all heard the philosophers babble about 'oneness' being 'beautiful' and 'holy'. But let me tell you that this kind of oneness certainly isn't pretty and if you're not careful it will scare the bejeezus out of you.
~Anonymous Lab Technician, Morgan Link 3DVision Live Interview

* Select your theme

*
Templates: 5: index (default), PortaMx/Mainindex (default), PortaMx/Frames (default), Display (default), GenericControls (default).
Sub templates: 8: init, html_above, body_above, portamx_above, main, portamx_below, body_below, html_below.
Language files: 4: index+Modifications.english (default), TopicRating/.english (default), PortaMx/PortaMx.english (default), OharaYTEmbed.english (default).
Style sheets: 0: .
Files included: 45 - 1228KB. (show)
Queries used: 36.

[Show Queries]